Uncertainty of Artificial Neural Networks for Daily Evaporation Prediction (Case Study: Rasht and Manjil Stations)
نویسندگان
چکیده مقاله:
This research uses the multilayer perceptron (MLP) model to predict daily evaporation at two synoptic stations located in Rasht and Manjil, Guilan province, in north-west of Iran. Initially the most important combinations of climatic parameters for both of the stations were identified using the gamma test; and daily evaporation were modeled based on the obtained optimal combination. The results of the artificial neural network- Gamma Test (ANN-GT) model are evaluated using the root mean square errors (RMSE), correlation coefficient and Nash-Sutcliffe (NS) criteria. The results showed that the ANN-GT model for Rasht station with a correlation coefficient 0.86, root mean square error 0.95 and Nash-Sutcliffe criteria 0.74 and for Manjil station with correlation coefficient 0.94, root mean square error1.58 and Nash-Sutcliffe criteria 0.89 has an acceptable performance in predicting daily evaporation. To evaluate the uncertainty, we considered a percentage of data which were included in 95 percent of uncertainty (p-factor) and the average width of the 95ppu band (d-factor). Regarding the uncertainty results, the average with of 95PPU bound were obtained as 0.33 and 0.3 for the Manjil and Rasht stations, respectively. This shows the low uncertainty level of the ANN-GT model for predicting daily evaporation at both of the stations. Furthermore, the percentage of the observed data at 95PPU band was low and equal to %25 and %45 for the Rasht and Manjil stations, respectively. The reason for these low values can be due to low uncertainty in the parameters.
منابع مشابه
Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کاملestimation of daily evaporation using of artificial neural networks (case study; borujerd meteorological station)
evaporation is one of the most important components of hydrologic cycle.accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. in order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. using direct methods require installing meteorological stations andinstruments ...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملtechnical and legal parameters for determination of river boundary,( case study haraz river)
چکیده با توسعه شهر نشینی و دخل و تصرف غیر مجاز در حریم رودخانه ها خسارات زیادی به رودخانه و محیط زیست اطراف آن وارده می شود. در حال حاضر بر اساس آئین نامه اصلاح شده بستر و حریم رودخانه ها، حریم کمی رودخانه که بلافاصله پس از بستر قرار می گیرد از 1 تا20 متر از منتهی الیه طرفین بستر رودخانه تعیین، که مقدار دقیق آن در هر بازه از رودخانه مشخص نیست. در کشورهای دیگر روشهای متفاوتی من جمله: درصد ریسک...
15 صفحه اولmonthly rainfall prediction using artificial neural networks and m5 model tree (case study: station of ahar)
introduction rainfall is considered as one of the most important factures in water cycle. prediction of monthly rainfall is important for many purposes such as estimating torrent, drought, run-off, sediment, irrigation programming and also management of drainage basins. rainfall prediction in each area is mediated by punctual data measured as humidity, temperature, wind speed and etc. as iran i...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 19
صفحات 1- 12
تاریخ انتشار 2019-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023